Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 7

Problem 1 (6 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \kappa \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_{\alpha}, \leq_{\alpha} \rangle \mid \alpha < \kappa \rangle$. Let G be M-generic for \mathbb{P}_{κ} and G_{α}, H_{α} be the derived generic filters for \mathbb{P}_{α} resp. $\dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$. Show that for each $\alpha \leq \kappa$, $M[G_{\alpha}] = M[\langle H_{\beta} \mid \beta < \alpha \rangle]$, where $M[\langle H_{\beta} \mid \beta < \alpha \rangle]$ is the smallest model N of ZFC with $M \cup \{\langle H_{\beta} \mid \beta < \alpha \rangle\} \subseteq N$.

Definition. A forcing notion \mathbb{P} is κ -distributive if the intersection of κ open dense sets is open dense, where $D \subset \mathbb{P}$ is open dense if it is dense and if $p \in D$ and $q \leq p$ imply $q \in D$.

Problem 2 (4 points). Suppose that κ is an infinite cardinal and assume that \mathbb{P} is κ -distributive. Let G be \mathbb{P} generic over M. Prove that if $f \in M[G]$ is a function from κ to M, then $f \in M$.

Problem 3 (4 points). Let \mathbb{T} be a normal Suslin tree. Prove that $\mathbb{P}_{\mathbb{T}}$ is \aleph_0 distributive and that it satisfies the countable chain condition, where $(\mathbb{P}_{\mathbb{T}}, <) = (\mathbb{T}, >)$.

Problem 4 (6 points). Let \mathbb{P} be κ -distributive and $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}}^{M}$ " $\dot{\mathbb{Q}}$ is $\check{\kappa}$ -distributive". Prove that $\mathbb{P} * \dot{\mathbb{Q}}$ is κ -distributive.

Please hand in your solutions on Monday, November 27 before the lecture.